The emerging sport of parkour has developed a landing technique focused on soft, quiet and controlled landings. The proficiency of practitioners (traceurs) for two-legged drop landing tasks is becoming increasingly established, but it is unknown whether the same aptitude will be demonstrated for different movements and with different landing techniques. This study investigates the ground reaction forces (GRFs) produced during three common parkour vaulting techniques utilising two common landing styles, with the aim of understanding how GRFs may change between the different scenarios and the subsequent implications for injury risk. 10 traceurs (age 29.4 ± 7.2 yrs, height 173.8 ± 8.1 cm, weight 74.2 ± 8.4 kg, experience 9.7 ± 3.6 yrs) performed a drop landing, step vault, dash vault, and kong vault onto a force plate with a two-legged precision landing (precision) and a single-legged running landing (running). Peak vertical (vGRF) and braking (bGRF) GRFs per limb were analysed by repeated-measures two-way ANOVA. A significant interaction effect between movement choice and landing style was found for both peak vGRF (p = 0.007) and peak bGRF (p < 0.001). All movements increased in vGRF when using a running landing, but only the drop and kong vault increased in bGRF while the step and dash vaults decreased in bGRF. The kong vault resulted in the greatest peak vGRFs and bGRFs, differing significantly from all other movements with a precision landing and, even in comparisons that did not achieve significance, always producing at least a medium to large effect size. The dash vault produced the least peak vGRF and bGRF of all movements in both landing styles, differing significantly from all others in bGRF and the drop and kong vault in vGRF. Movement choice and landing style affect landing GRFs for common parkour vaulting techniques. While GRFs increased in running style landings, they still did not exceed those typically experienced in jogging, indicating that traceurs mimic their performance in two-legged drop landings and continue to effectively mitigate GRFs when vaulting.